Effect of Femtosecond Ultraviolet and Infrared Laser Wavelength on Plasma Characteristics of Metals, Ceramics and Glass Samples Using Femtosecond Laser-Induced Breakdown Spectroscopy

Author:

Zaremba Gytis1ORCID,Paipulas Domas1,Vaičaitis Virgilijus1,Balachninaite Ona1ORCID

Affiliation:

1. Laser Research Center, Vilnius University, LT, Vilnius, Lithuania

Abstract

In this work, we present studies on the effect of laser wavelengths on the laser-induced plasma characterization using a femtosecond (fs) ytterbium-doped potassium-gadolinium tungstate (Yb:KGW) laser. Plasma plumes of copper, steel, ceramics, and glass samples were induced using a multiple shot of 200 fs laser pulses with 1030 nm and 343 nm wavelengths at fixed laser fluence ([Formula: see text]) and analyzed using the laser-induced breakdown spectroscopy (LIBS) technique. Time-resolved fs-LIBS measurements were performed on the same set of samples and under the same experimental conditions. For the calculation of plasma parameters, the set of spectral lines of Cu(I) (for copper sample), Fe(I) (for steel sample), and Ca(I), K(I) (for glass and ceramics samples) were observed. The plasma electron temperature and density were evaluated from the Boltzmann plots and Stark-broadening profiles of the plasma spectral lines, assuming the local thermodynamic equilibrium condition. Time-resolved plasma temperature and electron density for fs-LIBS using ultraviolet (UV) and infrared (IR) laser wavelengths were analyzed and no significant dependence on fs laser wavelength was observed for any of the samples. However, for all samples the signal-to-noise ratio (SNR) significantly increased using UV laser radiation: copper ([Formula: see text]), steel ([Formula: see text]), glass ([Formula: see text]), and ceramics ([Formula: see text]). Therefore, by using a fs UV laser wavelength for laser-induced breakdown spectroscopy experiments, for certain materials the SNR and at the same time the limit of detection can be significantly enhanced.

Funder

European Regional Development Fund

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3