Identifying the white matter pathways involved in multiple sclerosis-related tremor using diffusion tensor imaging

Author:

Bayoumi Ahmed1ORCID,Hasan Khader M.2,Patino Jorge1,Keser Zafer3,Thomas Joseph A.1,Gabr Refaat E.2ORCID,Pedroza Claudia4,Kamali Arash2,Schiess Mya C.1,Wolinsky Jerry S.1ORCID,Lincoln John A.1ORCID

Affiliation:

1. Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, USA

2. Department of Radiology, McGovern Medical School at UTHealth, Houston, TX, USA

3. Department of Neurology, Mayo Clinic, Rochester, MN, USA

4. Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, USA

Abstract

Background Tremor affects up to 45% of patients with Multiple Sclerosis (PwMS). Current understanding is based on insights from other neurological disorders, thus, not fully addressing the distinctive aspects of MS pathology. Objective To characterize the brain white matter (WM) correlates of MS-related tremor using diffusion tensor imaging (DTI). Methods In a prospective case-control study, PwMS with tremor were assessed for tremor severity and underwent MRI scans including DTI. PwMS without tremor served as matched controls. After tract selection and segmentation, the resulting diffusivity measures were used to calculate group differences and correlations with tremor severity. Results This study included 72 PwMS. The tremor group (n = 36) exhibited significant changes in several pathways, notably in the right inferior longitudinal fasciculus (Cohen's d = 1.53, q < 0.001) and left corticospinal tract ( d = 1.32, q < 0.001), compared to controls (n = 36). Furthermore, specific tracts showed a significant correlation with tremor severity, notably in the left medial lemniscus (Spearman's coefficient [ rsp] = −0.56, p < 0.001), and forceps minor of corpus callosum ( rsp = -0.45, p < 0.01). Conclusion MS-related tremor is associated with widespread diffusivity changes in WM pathways and its severity correlates with commissural and sensory projection pathways, which suggests a role for proprioception or involvement of the dentato-rubro-olivary circuit.

Funder

U.S. Department of Defense

Publisher

SAGE Publications

Subject

Cellular and Molecular Neuroscience,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3