Quantitative characterization of optic nerve atrophy in patients with multiple sclerosis

Author:

Harrigan Robert L12ORCID,Smith Alex K234,Lyttle Bailey2,Box Bailey2,Landman Bennett A123,Bagnato Francesca5,Pawate Siddharama5,Smith Seth A236

Affiliation:

1. Department of Electrical Engineering, Vanderbilt University, USA

2. Vanderbilt University Institute for Imaging Science, Vanderbilt University, USA

3. Department of Biomedical Engineering, Vanderbilt University, USA

4. Functional MRI of the Brain Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, UK

5. Department of Neurology, Vanderbilt University Medical Center, USA

6. Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, USA

Abstract

Background Optic neuritis (ON) is one of the most common presentations of multiple sclerosis (MS). Magnetic resonance imaging (MRI) of the optic nerves is challenging because of retrobulbar motion, orbital fat and susceptibility artifacts from maxillary sinuses; therefore, axonal loss is investigated with the surrogate measure of a single heuristically defined point along the nerve as opposed to volumetric investigation. Objective The objective of this paper is to derive optic nerve volumetrics along the entire nerve length in patients with MS and healthy controls in vivo using high-resolution, clinically viable MRI. Methods An advanced, isotropic T2-weighted turbo spin echo MRI was applied to 29 MS patients with (14 patients ON+) or without (15 patients ON–) history of ON and 42 healthy volunteers. An automated tool was used to estimate and compare whole optic nerve and surrounding cerebrospinal fluid radii along the length of the nerve. Results and conclusion Only ON+ MS patients had a significantly reduced optic nerve radius compared to healthy controls in the central segment of the optic nerve. Using clinically available MRI methods, we show and quantify ON volume loss for the first time in MS patients.

Publisher

SAGE Publications

Subject

Cellular and Molecular Neuroscience,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3