Upstream Dysfunction of Somatomotor Functional Connectivity After Corticospinal Damage in Stroke

Author:

Carter Alex R.1,Patel Kevin R.1,Astafiev Serguei V.2,Snyder Abraham Z.12,Rengachary Jennifer1,Strube Michael J.34,Pope Anna2,Shimony Joshua S.2,Lang Catherine E.135,Shulman Gordon L.1,Corbetta Maurizio126

Affiliation:

1. Department of Neurology, Washington University School of Medicine, St Louis, MO, USA

2. Malinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA

3. Program in Physical Therapy, Washington University School of Medicine, St Louis, MO, USA

4. Department of Psychology, Washington University in St. Louis, St Louis, MO, USA

5. Program in Occupational Therapy, Washington University School of Medicine, St Louis, MO, USA

6. Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA

Abstract

Background. Recent studies have shown that focal injuries can have remote effects on network function that affect behavior, but these network-wide repercussions are poorly understood. Objective. This study tested the hypothesis that lesions specifically to the outflow tract of a distributed network can result in upstream dysfunction in structurally intact portions of the network. In the somatomotor system, this upstream dysfunction hypothesis predicted that lesions of the corticospinal tract might be associated with functional disruption within the system. Motor impairment might then reflect the dual contribution of corticospinal damage and altered network functional connectivity. Methods. A total of 23 subacute stroke patients and 13 healthy controls participated in the study. Corticospinal tract damage was quantified using a template of the tract generated from diffusion tensor imaging in healthy controls. Somatomotor network functional integrity was determined by resting state functional connectivity magnetic resonance imaging. Results. The extent of corticospinal damage was negatively correlated with interhemispheric resting functional connectivity, in particular with connectivity between the left and right central sulcus. Although corticospinal damage accounted for much of the variance in motor performance, the behavioral impact of resting connectivity was greater in subjects with mild or moderate corticospinal damage and less in those with severe corticospinal damage. Conclusions. Our results demonstrated that dysfunction of cortical functional connectivity can occur after interruption of corticospinal outflow tracts and can contribute to impaired motor performance. Recognition of these secondary effects from a focal lesion is essential for understanding brain–behavior relationships after injury, and they may have important implications for neurorehabilitation.

Publisher

SAGE Publications

Subject

General Medicine

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3