Long-Term Exercise Improves Memory Deficits via Restoration of Myelin and Microvessel Damage, and Enhancement of Neurogenesis in the Aged Gerbil Hippocampus After Ischemic Stroke

Author:

Ahn Ji Hyeon1,Choi Jung Hoon2,Park Joon Ha2,Kim In Hye2,Cho Jeong-Hwi2,Lee Jae-Chul2,Koo Hyun-Mo3,Hwangbo Gak4,Yoo Ki-Yeon5,Lee Choong Hyun6,Hwang In Koo7,Cho Jun Hwi2,Choi Soo Young1,Kwon Young-Guen8,Kim Young-Myeong2,Kang Il-Jun1,Won Moo-Ho2

Affiliation:

1. Hallym University, Chuncheon, South Korea

2. Kangwon National University, Chuncheon, South Korea

3. Kyungsung University, Busan, South Korea

4. Daegu University, Gyeongsan, South Korea

5. Gangneung-Wonju National University, Gangneung, South Korea

6. Dankook University, Cheonan, South Korea

7. Seoul National University, Seoul, South Korea

8. Yonsei University, Seoul, South Korea

Abstract

Background. The positive correlation between therapeutic exercise and memory recovery in cases of ischemia has been extensively studied; however, long-term exercise begun after ischemic neuronal death as a chronic neurorestorative strategy has not yet been thoroughly examined. Objective. The purpose of this study is to investigate possible mechanisms by which exercise ameliorates ischemia-induced memory impairment in the aged gerbil hippocampus after transient cerebral ischemia. Methods. Treadmill exercise was begun 5 days after ischemia-reperfusion (I-R) and lasted for 1 or 4 weeks. The animals were sacrificed 31 days after the induction of ischemia. Changes in short-term memory, as well as the hippocampal expression of markers of cell proliferation, neuroblast differentiation, neurogenesis, myelin and microvessel repair, and growth factors were examined by immunohistochemistry and/or western blots. Results. Four weeks of exercise facilitated memory recovery despite neuronal damage in the stratum pyramidale (SP) of the hippocampal CA1 region and in the polymorphic layer (PoL) of the dentate gyrus (DG) after I-R. Long-term exercise enhanced cell proliferation and neuroblast differentiation in a time-dependent manner, and newly generated mature cells were found in the granule cell layer of the DG, but not in the SP of the CA1 region or in the PoL of the DG. In addition, long-term exercise ameliorated ischemia-induced damage of myelin and microvessels, which was correlated with increased BDNF expression in the CA1 region and the DG. Conclusions. These results suggest that long-term treadmill exercise after I-R can restore memory function through replacement of multiple damaged structures in the ischemic aged hippocampus.

Publisher

SAGE Publications

Subject

General Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3