Affiliation:
1. Sargent College, Boston University, Boston, MA, USA
2. MedRhythms Inc, Portland, ME, USA
Abstract
Background The rhythm of music can entrain neurons in motor cortex by way of direct connections between auditory and motor brain regions. Objective We sought to automate an individualized and progressive music-based, walking rehabilitation program using real-time sensor data in combination with decision algorithms. Methods A music-based digital therapeutic was developed to maintain high sound quality while modulating, in real-time, the tempo (ie, beats per minute, or bpm) of music based on a user’s ability to entrain to the tempo and progress to faster walking cadences in-sync with the progression of the tempo. Eleven individuals with chronic hemiparesis completed one automated 30-minute training visit. Seven returned for 2 additional visits. Safety, feasibility, and rehabilitative potential (ie, changes in walking speed relative to clinically meaningful change scores) were evaluated. Results A single, fully automated training visit resulted in increased usual (∆ 0.085 ± 0.027 m/s, P = .011) and fast (∆ 0.093 ± 0.032 m/s, P = .016) walking speeds. The 7 participants who completed additional training visits increased their usual walking speed by 0.12 ± 0.03 m/s after only 3 days of training. Changes in walking speed were highly related to changes in walking cadence ( R2 > 0.70). No trips or falls were noted during training, all users reported that the device helped them walk faster, and 70% indicated that they would use it most or all of the time at home. Conclusions In this proof-of-concept study, we show that a sensor-automated, progressive, and individualized rhythmic locomotor training program can be implemented safely and effectively to train walking speed after stroke. Music-based digital therapeutics have the potential to facilitate salient, community-based rehabilitation.
Funder
MedRhythms Inc
National Institutes of Health
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献