Assessment of the Simultaneous Use of Asphalt Concrete and Foam Concrete as a Full Cross-Section Layer in the Substructure of the China Railway Track System (CRTS) III Slab Ballastless Tracks

Author:

Klomranok Thanut1ORCID,Su Qian1

Affiliation:

1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, P.R. China

Abstract

This paper proposes the simultaneous application of asphalt concrete (AC) and foam concrete (FC) as a full cross-section layer in the substructure of the high-speed railway ballastless track. AC is designed as a waterproof layer and is placed as part of the top surface layer of the subgrade bed where the mixture is made from three types of performance grade (PG) binders (normal, high, and modified grade binders) named PG64-22, PG70-22, and PG76-22, respectively. FC is designed as a subgrade material to replace the traditional material in the bottom layer of the subgrade bed. It has a target density of 500–700 kg/m3 and polypropylene (PP) fiber is added at a ratio of 0.25% and 0.40% by volume. The mechanical properties of both materials are reviewed from the authors’ previous research, in which they were assessed through laboratory testing in accordance with ASTM standards. In addition, the numerical model analyzed the dynamic response of the whole structure when AC and FC were applied as full cross-section layers under different thicknesses of FC and then compared with traditional track structures. Laboratory test results indicate that PG76-22, or modified asphalt binder and FC at a density of 600 kg/m3 with the addition of 0.25% PP fiber, is suitable for use in slab ballastless tracks. In addition, the prediction of the model shows that AC at a thickness of 0.12 m and FC at a thickness of 1.00 m can reduce the stress and vibration of the track structure better than the traditional structure, resulting in stabilization and long-term service life.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference40 articles.

1. In situ experimental study on high speed train induced ground vibrations with the ballast-less track

2. A discussion on technologies for improving the operational speed of high-speed railway networks

3. Sustainability development strategy of China’s high speed rail

4. Li D. Railway Track Granular Layer Thickness Design Based on Subgrade Performance Under Repeated Loading. PhD dissertation, University of Massachusetts, Amherst, 1994.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3