Combining Machine Learning and Fuzzy Rule-Based System in Automating Signal Timing Experts’ Decisions during Non-Recurrent Congestion

Author:

Tariq Mosammat Tahnin1,Massahi Aidin2,Saha Rajib1,Hadi Mohammed1

Affiliation:

1. Department of Civil and Environment Engineering, Florida International University, Miami, FL

2. Eland Engineering, Inc., Fort Lauderdale, FL

Abstract

Events such as surges in demand or lane blockages can create queue spillbacks even during off-peak periods, resulting in delays and spillbacks to upstream intersections. To address this issue, some transportation agencies have started implementing processes to change signal timings in real time based on traffic signal engineers’ observations of incident and traffic conditions at the intersections upstream and downstream of the congested locations. Decisions to change the signal timing are governed by many factors, such as queue length, conditions of the main and side streets, potential of traffic spilling back to upstream intersections, the importance of upstream cross streets, and the potential of the queue backing up to a freeway ramp. This paper investigates and assesses automating the process of updating the signal timing plans during non-recurrent conditions by capturing the history of the responses of the traffic signal engineers to non-recurrent conditions and utilizing this experience to train a machine learning model. A combination of recursive partitioning and regression decision tree (RPART) and fuzzy rule-based system (FRBS) is utilized in this study to deal with the vagueness and uncertainty of human decisions. Comparing the decisions made based on the resulting fuzzy rules from applying the methodology with previously recorded expert decisions for a project case study indicates accurate recommendations for shifts in the green phases of traffic signals. The simulation results indicate that changing the green times based on the output of the fuzzy rules decreased delays caused by lane blockages or demand surge.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference40 articles.

1. Intelligent Transportation Systems Master Plan. Final Report, Florida Department of Transportation (District 5), Florida, 2016.

2. TSM&O Annual Report. Florida Department of Transportation (FDOT), District Four, Florida 2017.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3