Crash and Near-Crash Risk Assessment of Distracted Driving and Engagement in Secondary Tasks: A Naturalistic Driving Study

Author:

Bakhit Peter R.1,Guo BeiBei2,Ishak Sherif3

Affiliation:

1. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA

2. Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA

3. Civil and Environmental Engineering, University of Alabama in Huntsville, Huntsville, AL

Abstract

Distracted driving behavior is a perennial safety concern that affects not only the vehicle’s occupants but other road users as well. Distraction is typically caused by engagement in secondary tasks and activities such as manipulating objects and passenger interaction, among many others. This study provides an in-depth analysis of the increased crash/near-crash risk associated with different secondary tasks using the largest real-world naturalistic driving dataset (SHRP2 Naturalistic Driving Study). Several statistical and data-mining techniques were developed to analyze the distracted driving and crash risk. First, a bivariate probit model was constructed to investigate the relationship between engagement in a secondary task and the safety-critical events likelihood. Subsequently, two different techniques were implemented to quantify the increased crash/near-crash risk because of involvement in a particular secondary task. The first technique used the baseline-category logits model to estimate the increased crash risk in terms of conditional odds ratios. The second technique used the a priori association rule mining algorithm to reveal the risk associated with each secondary task in terms of support, confidence, and lift indexes. The results indicate that reaching for objects, manipulating objects, reading, and cell phone texting are the highest crash risk factors among various secondary tasks. Recognizing the effect of different secondary tasks on traffic safety in a real-world environment helps legislators enact laws that reduce crashes resulting from distracted driving, as well as enabling government officials to make informed decisions about the allocation of available resources to reduce roadway crashes and improve traffic safety.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3