National-Level Multimodal Origin–Destination Estimation Based on Passively Collected Location Data and Machine Learning Methods

Author:

Pan Yixuan1ORCID,Darzi Aref1ORCID,Yang Mofeng2ORCID,Sun Qianqian2ORCID,Kabiri Aliakbar2ORCID,Zhao Guangchen2ORCID,Xiong Chenfeng3ORCID,Zhang Lei2

Affiliation:

1. Center for Advanced Transportation Technology Laboratory, Department of Civil and Environmental Engineering, University of Maryland, College Park, MD

2. Department of Civil and Environmental Engineering, University of Maryland, College Park, MD

3. Department of Civil and Environmental Engineering, Villanova University, Villanova, PA

Abstract

Along with the development of information and positioning technologies, there emerges passively collected location data that contain location observations with time information from various types of mobile devices. Passive location data are known for their large sample size and continuous behavior observations. However, they also require careful and comprehensive data processing and modeling algorithms for privacy protection and practical applications. In the meantime, the travel demand estimation of origin–destination (OD) tables is fundamental in transportation planning and analysis. There is a lack of national OD estimation that provides time-dependent travel behaviors for all travel modes. Passively collected location data appeal to researchers for their potential of serving as the data source for estimation and monitoring of large-scale multimodal travel demand. This research proposes a comprehensive set of methods for passive location data processing including data cleaning, activity location and purpose identification, trip-level information identification, social demographic imputation, sample weighting and expansion, and demand validation. For each task, the paper evaluates the state-of-the-practice and state-of-the-art algorithms and develops an applicable method jointly considering different features of various passive location data sources, imputation accuracy, and computation efficiency. The paper further examines the viability of the method kit in a national-level case study and successfully derives the multimodal national-level OD estimates with additional data products, such as trip rate and vehicle miles traveled, at different geographic levels and temporal resolutions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3