Modeling Interdependent Infrastructure System Vulnerability with Imprecise Information Using Two Fuzzy Inference Systems

Author:

Pan Shidong1ORCID,Bathgate Kyle1ORCID,Han Zhe2ORCID,Sun Jingran2ORCID,Zhang Zhanmin1

Affiliation:

1. Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX

2. Center for Transportation Research, The University of Texas at Austin, Austin, TX

Abstract

Infrastructure systems play important roles in economic development and the social quality of life. Interdependencies exist between infrastructure systems: a functional disruption in one system can affect dependent systems, thereby escalating the impacts. It is vital to properly model interdependencies to understand the full impacts of disruptive events on infrastructure systems. Quantitative data on infrastructure interdependency is often difficult to obtain or unavailable for a variety of reasons. To overcome quantitative data scarcity issues, qualitative subject expert knowledge has been used in interdependency analysis, primarily in the form of linguistic responses. Linguistic data is susceptible to uncertainties arising from variations in intended meanings, which may yield inaccurate results. This paper proposes a framework to address this problem using two fuzzy inference systems to model event-specific, network-wide infrastructure failures. The first fuzzy inference system models the damage induced by interdependencies using verbal descriptions. The second fuzzy inference system accounts for synergistic, compounding effects of multiple incidences of indirect damage caused by interdependencies. A case study is conducted to demonstrate the applicability of the proposed methodology using electric and gas distribution networks in the United Kingdom. Sensitivity analyses are performed to show the flexibility of the fuzzy inference systems. The results show that the proposed method can model the interdependency and vulnerability of infrastructure systems using fuzzy inference systems to handle imprecise input. The proposed framework may assist practitioners in better understanding the interdependency and vulnerability of infrastructure systems, and in making more informed decisions to reduce losses resulting from disruptive events.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3