Multi-Level Driver Workload Prediction using Machine Learning and Off-the-Shelf Sensors

Author:

van Gent Paul1,Melman Timo2,Farah Haneen1,van Nes Nicole3,van Arem Bart1

Affiliation:

1. Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands

2. Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands

3. SWOV—Stichting Wetenschappelijk Onderzoek Verkeersveiligheid, The Hague, Netherlands

Abstract

The present study aims to add to the literature on driver workload prediction using machine learning methods. The main aim is to develop workload prediction on a multi-level basis, rather than a binary high/low distinction as often found in literature. The presented approach relies on measures that can be obtained unobtrusively in the driving environment with off-the-shelf sensors, and on machine learning methods that can be implemented in low-power embedded systems. Two simulator studies were performed, one inducing workload using realistic driving conditions, and one inducing workload with a relatively demanding lane-keeping task. Individual and group-based machine learning models were trained on both datasets and evaluated. For the group-based models the generalizing capability, that is the performance when predicting data from previously unseen individuals, was also assessed. Results show that multi-level workload prediction on the individual and group level works well, achieving high correct rates and accuracy scores. Generalizing between individuals proved difficult using realistic driving conditions but worked well in the highly demanding lane-keeping task. Reasons for this discrepancy are discussed as well as future research directions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3