Toward Large-Scale Simulation of Railroad Dynamics: Coupled Train–Track–Discrete Element Method Model

Author:

Liu Zhongyi1ORCID,Shoemaker Travis1ORCID,Tutumluer Erol1ORCID,Hashash Youssef M.A.1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL

Abstract

The development of a large-scale high-fidelity model of train, rail, crosstie, and ballast offers a virtual laboratory for studying train–track dynamics. Currently, Train–Track (TT) models integrate the whole train and track system together, but lack explicit representation of ballast particles and simplify them as one-degree-of-freedom mass blocks only moving vertically, whereas models based on Discrete Element Method (DEM) for detailed ballast granular mechanics rarely include detailed representations of the rail and train because these multi-body systems are difficult to model within a DEM framework. To overcome these shortcomings, a large-scale TT-DEM coupled model with more than 480,000 polyhedron ballast particles was established to simulate track dynamic responses. To make this size model feasible with available computing resources, the TT and DEM models were coupled with a proportional–integral–derivative (PID) algorithm to eliminate the need for iteration within each time step. Additionally, the DEM time step was increased, cross-software communication was streamlined, and DEM data extraction was improved. Collectively, these improvements resulted in a model speed-up of about 200 times. The proposed TT-DEM model was validated by comparing predicted and field measured crosstie displacements. These comparisons showed that the TT-DEM model more closely represents the nonlinear system behavior than the conventional TT model and offers the advantage of studying the ballast at the particle level. A study of the thirty-crosstie TT-DEM ballast particle response to train track loading identified significant horizontal ballast forces that are not included in the TT model or single-crosstie TT-DEM models.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3