Predicting Directional Traffic Volume at Intersections with Automated Traffic Signal Performance Measures Data Using Machine Learning Algorithms

Author:

Wang Bangyu1ORCID,Fulda Nancy2ORCID,Huang Zhengyang2,Schultz Grant G.3ORCID,Macfarlane Gregory S.3ORCID,Arnesen Joseph2,Khayyat Adnan2

Affiliation:

1. HDR, Bellevue, WA

2. Department of Computer Science, Brigham Young University, Provo, UT

3. Department of Civil and Construction Engineering, Brigham Young University, Provo, UT

Abstract

Automated traffic signal performance measures (ATSPM) have become widely adopted and utilized by state and local agencies in the U.S. for collecting real-time traffic data 24 h a day, 7 days a week. These agencies have developed new performance measures and applications to address their local transportation planning needs. However, recent research has identified data quality issues in the collected data from ATSPM systems. Specifically, the traffic volumes collected through ATSPM exhibit data anomalies that do not accurately reflect the actual traffic patterns at intersections. As such, there is a need to address the data quality issues found in ATSPM datasets. The purpose of this paper is to evaluate the use of machine learning algorithms and statistical methods to predict traffic volume at intersections. Existing traffic volume data, along with additional metrics such as timestamps, weather conditions, crash data, and holidays, are evaluated to predict traffic volume and address the data anomalies present in ATSPM datasets. Two statistical methods and four machine learning algorithms are evaluated to determine their ability to predict traffic volumes. By comparing the root mean square error (RMSE) and the mean absolute percentage error (MAPE) between each model, the results demonstrate that the long short-term memory (LSTM) model exhibits the lowest error in predicting traffic volume compared with the other models. The LSTM model achieves an RMSE as low as 9.4 vehicles and an MAPE as low as 35%. By leveraging the LSTM model, traffic agencies can enhance the quality of their ATSPM data, enabling better decision-making for traffic operations by their engineers and planners.

Publisher

SAGE Publications

Reference51 articles.

1. Utah Department of Transportation (UDOT). ATSPM Frequently Asked Questions. 2023. https://udottraffic.utah.gov/ATSPM/FAQs/Display. Accessed January 31, 2023.

2. A Methodology to Detect Traffic Data Anomalies in Automated Traffic Signal Performance Measures

3. Evaluating Signal Systems Using Automated Traffic Signal Performance Measures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3