Influence of Non-Melting Waste Plastics on Volumetric Properties and Performance of Asphalt Mixtures

Author:

Revelli Venkatsushanth1ORCID,Ali Ayman1ORCID,Mehta Yusuf1ORCID,Cox Ben C.2ORCID,Casillas Sadie2

Affiliation:

1. Department of Civil and Environmental Engineering, Center for Research and Education in Advanced Transportation Engineering Systems, Rowan University, Glassboro, NJ

2. Geotechnical and Structures Lab, U.S. Army Engineer Research and Development Center, Vicksburg, MS

Abstract

The main objective of the study is to evaluate the impact of using polystyrene (PS) and polyethylene terephthalate (PET) plastics as an additive in asphalt mixtures. For this purpose, volumetric modification, moisture susceptibility along with performance variation at high, intermediate, and low temperature conditions were evaluated. Initially plastics were subjected to calorimeter analysis for assessing their melting characterization. Both PS and PET are included as dry mix additives individually at dosage levels of 3%, 6%, and 9% by weight of asphalt binder. Further, the changes in thermal properties of plastics occurring during mixture preparation were correlated to better understand the volumetric modification. PS, owing to its glass transition and partial amorphous nature, exhibited minimum deviation (<1%) from design air voids (4 ± 0.5%). PET was observed to increase the volumes of voids in mineral aggregate (VMA) and air void, owing to its crystalline nature. As regards performance, PS and PET modification enhanced the moisture resistance by 1.05 to 1.11 times the control mixture. The rutting tolerance index ( RTindex) value increased for all plastic modified mixtures from the indirect tensile asphalt rutting test (IDEAL RT) performed at 58°C. However, the intermediate temperature cracking tolerance index ( CTindex) at 19°C conveyed the high embrittled nature from plastic modification making the mixtures more susceptible to cracking. From the Gf versus l75 /m75 interaction diagram, it was conveyed that although addition of plastics improves the fracture toughness of asphalt mixtures, the ductile nature of mixtures is compromised. Also, PS and PET modification could not improve the ability of asphalt mixtures to resist thermal cracking, evaluated at −18°C.

Funder

Cold Regions Research and Engineering Laboratory

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3