Tensor Decomposition for Spatiotemporal Mobility Pattern Learning with Mobile Phone Data

Author:

Gong Suxia1ORCID,Saadi Ismaïl2ORCID,Teller Jacques1,Cools Mario134ORCID

Affiliation:

1. LEMA Research Group, Department of Urban & Environmental Engineering, University of Liège, Liège, Belgium

2. MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK

3. Faculty of Business Economics, Hasselt University, Diepenbeek, Belgium

4. Department of Mathematics, Education, Econometrics and Statistics (MEES), KULeuven Campus Brussels, Belgium

Abstract

Detecting urban mobility patterns is crucial for policymakers in urban and transport planning. Mobile phone data have been increasingly deployed to measure the spatiotemporal variations in human mobility. This work applied non-negative Tucker decomposition (NTD) to mobile phone-based origin–destination (O-D) matrices to explore mobility patterns’ latent spatial and temporal relationships in the province of Liège, Belgium. Four [Formula: see text] traffic tensors have been built for one regular weekday, one regular weekend day, one holiday weekday, and one holiday weekend day, respectively. The proposed method inferred spatial clusters and temporal patterns while interpreting the correlation between spatial clusters and temporal patterns through geographical visualization. As a result, we found the similarity of O-D and destination–origin (D-O) patterns and the symmetry for the trips of the temporal patterns with evening peak and morning peaks on the weekday. Moreover, we investigated the attraction of different spatial clusters with two temporal patterns on a regular weekday and validated the reconstructed demand using population counts and commuting matrices. Finally, the differences in spatial and temporal interactions have been addressed in detail.

Funder

European Regional Development Fund

Walloon Region of Belgium

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3