An effective deep learning-based approach for splice site identification in gene expression

Author:

Ali Mohsin1,Shah Dilawar1ORCID,Qazi Shahid1,Khan Izaz Ahmad1ORCID,Abrar Mohammad2,Zahir Sana3

Affiliation:

1. Department of Computer Science, Bacha Khan University, Charsadda, KP, Pakistan

2. Faculty of Computer Science, Arab Open University, Muscat, Oman, Sultanate of Oman

3. Institute of Computer Sciences and Information Technology, The University of Agriculture Peshawar, Peshawar, KP, Pakistan

Abstract

A crucial stage in eukaryote gene expression involves mRNA splicing by a protein assembly known as the spliceosome. This step significantly contributes to generating and properly operating the ultimate gene product. Since non-coding introns disrupt eukaryotic genes, splicing entails the elimination of introns and joining exons to create a functional mRNA molecule. Nevertheless, accurately finding splice sequence sites using various molecular biology techniques and other biological approaches is complex and time-consuming. This paper presents a precise and reliable computer-aided diagnosis (CAD) technique for the rapid and correct identification of splice site sequences. The proposed deep learning-based framework uses long short-term memory (LSTM) to extract distinct patterns from RNA sequences, enabling rapid and accurate point mutation sequence mapping. The proposed network employs one-hot encodings to find sequential patterns that effectively identify splicing sites. A thorough ablation study of traditional machine learning, one-dimensional convolutional neural networks (1D-CNNs), and recurrent neural networks (RNNs) models was conducted. The proposed LSTM network outperformed existing state-of-the-art approaches, improving accuracy by 3% and 2% for the acceptor and donor sites datasets.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3