Free vibration and damping analysis of the cylindrical shell partially covered with equidistant multi-ring hard coating based on a unified Jacobi-Ritz method

Author:

Yang Jian1ORCID,Song Hua12ORCID,Chen Dong1ORCID,Zhang Yue1ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan, Liaoning, China

2. School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, Liaoning, China

Abstract

In this study, the aim was to evaluate the vibration suppression performance of the partially covered equidistant multi-ring hard coating damping treatment for the cylindrical shell structure in aviation power equipment. A continuous rectangular pulse function was presented to describe the local thickness variation of arbitrary coating proportion and arbitrary number of coating rings. A semi-analytical unified solution procedure was established by combining the rectangular pulse function, the generalized Jacobi polynomials, and the Rayleigh-Ritz method. The stiffness coefficient k = 1013 N/m2 and the truncation number N = 8 were found to be large enough to achieve an accurate and efficient solution of the vibration analysis of the shell. The modal loss factor generally increased with the increase of the coating proportion ranging from 0.0 to 1.0 for all the circumferential wave numbers. The modal loss factor increased roughly linear with the coating proportion for all the circumferential wave numbers. And the modal loss factor was increased with the circumferential wave number, and the greater the number of circumferential waves, the greater the rate of change. The increase of the ring number was not always beneficial for vibration reduction of the shell, while the modal loss factor increased roughly linear with the coating proportion. The increased ring number and coating proportion tend more to exhibit an obvious incremental damping effect under larger circumferential wave number.

Funder

Department of Education of Liaoning Province

University of Science and Technology Liaoning

Publisher

SAGE Publications

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3