Remote Ischemic Preconditioning: Current Knowledge, Unresolved Questions, and Future Priorities

Author:

Przyklenk Karin1,Whittaker Peter2

Affiliation:

1. Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA, Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA, Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA  kprzykle@med.wayne.edu

2. Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA, Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA

Abstract

Remote ischemic preconditioning (RIPC) is the phenomenon whereby brief episodes of ischemia–reperfusion applied in distant tissues or organs render the myocardium resistant to a subsequent sustained episode of ischemia. Reduction of infarct size with RIPC has been documented in response to (i) brief antecedent ischemia in a remote coronary vascular bed (intra-cardiac protection); (ii) collection and transfer of coronary effluent from perconditioning “donor” hearts to naive “receptor” hearts (inter-cardiac protection); (iii) brief ischemia applied in skeletal muscle, mesentery, and other organs (interorgan protection); and (iv) remote nociception (“remote PC of trauma”). Moreover, the paradigm has expanded to encompass temporal modifications in the application of the remote stimulus (remote perconditioning and remote postconditioning). Progress has also been made in translating the concept of RIPC to patients undergoing planned ischemic events: evidence for attenuation of cardiac enzyme release with RIPC has been reported after elective abdominal aortic aneurysm repair, angioplasty, and coronary artery bypass graft surgery. However, despite these advances in characterization and clinical application, the mechanisms of RIPC—most notably, the means by which the protective stimulus is communicated to the heart—remain poorly defined and, in all likelihood, are model dependent.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3