Berberine Pretreatment Confers Cardioprotection Against Ischemia–Reperfusion Injury in a Rat Model of Type 2 Diabetes

Author:

Chang Wenguang123,Li Kun1,Guan Fengying1,Yao Fan1,Yu Yang1,Zhang Ming123,Hatch Grant M.1234,Chen Li1

Affiliation:

1. Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, China

2. Department of Pharmacology and Therapeutics, Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, Manitoba, Canada

3. DREAM Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada

4. Department of Biochemistry and Medical Genetics, Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, Manitoba, Canada

Abstract

Preclinical and clinical studies have demonstrated that berberine (BBR) improves diabetic complications and reduces mortality of patients with congestive heart failure. The therapeutic effects of BBR have been reported to be mediated by its regulation of adenosine monophosphate (AMP)-activated protein kinase (AMPK). We previously reported that BBR protects against ischemia–reperfusion injury via regulating AMPK activity in both ischemic and nonischemic areas of the rat heart. Since diabetic hearts are more sensitive to ischemia–reperfusion injury, we examined whether BBR treatment exhibited cardioprotective effects in the diabetic heart. Type 2 diabetic rats were pretreated plus or minus BBR for 7 days and subjected to 30-minute ischemia followed by 120-minute reperfusion. Pretreatment of type 2 diabetic rats with BBR reduced ischemia–reperfusion injury infarct size and attenuated arrhythmia compared to untreated diabetic controls. Subsequent to ischemia–reperfusion, serum triglyceride, total cholesterol, and malondialdehyde levels were reduced by pretreatment of type 2 diabetic rats with BBR compared to untreated diabetic controls. In contrast, serum glucose and superoxide dismutase levels were unaltered. The mechanism for the BBR-mediated cardioprotective effect was examined. Pretreatment with BBR did not alter AMPK activity in ischemic areas at risk but increased AMPK activity in nonischemic areas compared to untreated diabetic controls. The increased AMPK activity in nonischemic areas was due an elevated ratio of AMP to adenosine triphosphate (ATP) and adenosine diphosphate to ATP. In addition, pretreatment with BBR increased protein kinase B (AKT) phosphorylation and reduced glycogen synthase kinase 3β (GSK3β) activity in nonischemic areas compared to untreated diabetic controls. These findings indicate that BBR protects the diabetic heart from ischemia–reperfusion injury. In addition, BBR may mediate this cardioprotective effect through AMPK activation, AKT phosphorylation, and GSK3β inhibition in the nonischemic areas of the diabetic heart.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3