Latent transforming growth factor-beta 1 and its binding protein are components of extracellular matrix microfibrils.

Author:

Taipale J,Saharinen J,Hedman K,Keski-Oja J

Abstract

We studied the localization of latent transforming growth factor-beta 1 (TGF-beta 1) and its binding protein (LTBP-1) in the extracellular matrix of cultured human fibroblasts by immunofluorescence and immunoelectron microscopy. Immunofluorescence of confluent fibroblast cultures indicated that LTBP-1 localizes to extracellular fibrillar structures resembling fibronectin-collagen matrix. Similar fibrillar structures were detected in cells stained with antibodies specific for TGF-beta 1 propeptide (beta 1-LAP). Both LTBP-1 and beta 1-LAP colocalized with fibronectin in double immunofluorescence analysis. These fibrillar structures were resistant to extraction with sodium deoxycholate, which is further evidence that LTBP-1 and large latent TGF-beta 1 complexes are integral components of the extracellular matrix. SV-40-transformed human fibroblasts lacked extracellular LTBP-1 fibers. EM analysis revealed approximately 10-nm-thick microfibrils that were labeled by anti-LTBP at 90-140-nm intervals. In addition, LTBP-1 was found in structures that were heavily labeled for fibronectin. The accumulation of LTBP-1 in the fibronectin matrix could be reconstituted in vitro. When isolated matrix components were immobilized on nitrocellulose and incubated with fibroblast conditioned medium, LTBP-1 from the medium associated with cellular fibronectin but not with heparan or chondroitin sulfate, vitronectin, tenascin, laminin, or collagen I or IV. The association of LTBP-1 with cellular fibronectin was abolished by treatment of the medium with plasmin, which cleaves LTBP-1 and inhibits its assembly to matrix. The present results indicate that latent TGF-beta 1 complexes are components of the extracellular matrix and suggest that alterations of the pericellular matrix could result in aberrant TGF-beta signaling.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3