On a Path to Unfolding the Biological Mechanisms of Orthodontic Tooth Movement

Author:

Krishnan V.12,Davidovitch Z.12

Affiliation:

1. Department of Orthodontics, Rajas Dental College, Tirunelveli District, Tamilnadu, India; and

2. Department of Orthodontics, Case Western Reserve University, Cleveland, OH, USA

Abstract

Orthodontic forces deform the extracellular matrix and activate cells of the paradental tissues, facilitating tooth movement. Discoveries in mechanobiology have illuminated sequential cellular and molecular events, such as signal generation and transduction, cytoskeletal re-organization, gene expression, differentiation, proliferation, synthesis and secretion of specific products, and apoptosis. Orthodontists work in a unique biological environment, wherein applied forces engender remodeling of both mineralized and non-mineralized paradental tissues, including the associated blood vessels and neural elements. This review aims at identifying events that affect the sequence, timing, and significance of factors that determine the nature of the biological response of each paradental tissue to orthodontic force. The results of this literature review emphasize the fact that mechanoresponses and inflammation are both essential for achieving tooth movement clinically. If both are working in concert, orthodontists might be able to accelerate or decelerate tooth movement by adding adjuvant methods, whether physical, chemical, or surgical.

Publisher

SAGE Publications

Subject

General Dentistry

Reference105 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3