Force-induced Rapid Changes in Cell Fate at Midpalatal Suture Cartilage of Growing Rats

Author:

Kobayashi E.T.1,Hashimoto F.1,Kobayashi Y.1,Sakai E.2,Miyazaki Y.2,Kamiya T.3,Kobayashi K.1,Kato Y.2,Sakai H.2

Affiliation:

1. Department of Orthodontics, Nagasaki University School of Dentistry, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan

2. Department of Pharmacology, Nagasaki University School of Dentistry, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan

3. Department of Oral and Maxillofacial Surgery, Nagasaki University School of Dentistry, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan

Abstract

The application of expansional force induces replacement of the cartilaginous tissue with bone at the midpalatal suture of growing rats. We examined the early cellular events evoked by force by analyzing the expression of proliferating cell nuclear antigen (PCNA), an operational marker of cell proliferation, and of several bone matrix proteins. A rectangular orthodontic appliance was set between the right and left upper molars of four-week-old rats, with 50 g of initial expansional force. Two days after application of the force, the pre-existing cartilage was separated laterally. Mesenchymal cells with stretched shapes were arranged parallel to the expansional force and filled the center of the suture. Only a few of these stretched cells exhibited nuclear accumulation of PCNA. In contrast, many polygonal mesenchymal cells distributed along the inner lateral side of the cartilaginous tissue exhibited strong immunoreactivity for PCNA. Localization of alkaline phosphatase activity overlapped into this proliferating cell zone. Nascent extracellular matrix under the proliferating cells was positive for osteocalcin, indicating commencement of active bone formation. These findings indicated that, among mesenchymal cells subjected to expansional forces, only cells located on the inner side of the cartilaginous tissue proliferate and differentiate into osteoblasts. In agreement with rapid bone growth progression, apoptosis was also observed in the zone of proliferating cells, as measured by TdT-mediated dUTP-biotin nick end labeling (TUNEL) assays.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3