In vitro Cellular Aging Stimulates Interleukin-1β Production in Stretched Human Periodontal-ligament-derived Cells

Author:

Shimizu N.1,Goseki T.1,Yamaguchi M.1,Iwasawa T.1,Takiguchi H.2,Abiko Y.2

Affiliation:

1. Department of Orthodontics

2. Department of Biochemistry, Nihon University School of Dentistry at Matsudo, 870-1, Sakaecho-Nishi 2, Matsudo, Chiba 271, Japan

Abstract

Although the severity of periodontal disease is known to be affected by host age, the pathological role of aging in periodontal disease, and especially that attributable to trauma from occlusion, has not been well-characterized. Interleukin (IL)-1β is a key mediator involved in periodontal diseases, a potent stimulator of bone resorption. Furthermore, it is produced by human periodontal ligament (PDL) cells in response to mechanical stress. To investigate the age-related changes in the biosynthetic capacity of IL-1β in PDL cells, we examined the effects of in vitro cellular aging with mechanical stress on IL-1β protein and gene expression by human PDL cells. Human PDL cells (young = 5th or 6th passage; old = 18-20th passage) were cultured on flexible-bottomed culture plates, and the cells were deformed at 6 cycles per min at 2 steps of tension force for 1 to 5 days. We found a two-fold increase in IL-lp production by old PDL cells subjected to mechanical tension compared with that by young PDL cells, although the constitutive levels of IL-1β were similar in both the young and old PDL cells. This increase was tension-dependent. IL-1β mRNA was also detected in both the cell types under basal conditions, and its expression was further enhanced by application of mechanical tension by use of reverse-transcription-polymerase chain-reaction (RT-PCR) and in situ hybridization methods. The increase in signal rate was higher in the old cells than in the young cells. IL-1β-converting enzyme mRNA remained unchanged. It is possible that a large amount of IL-1β produced by PDL cells from an aged host in response to mechanical force may be positively related to the accleration of alveolar bone resorption.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3