Overexpressed TGF-β in Subchondral Bone Leads to Mandibular Condyle Degradation

Author:

Jiao K.1,Zhang M.1,Niu L.2,Yu S.1,Zhen G.3,Xian L.3,Yu B.3,Yang K.4,Liu P.5,Cao X.3,Wang M.1

Affiliation:

1. Department of Oral Anatomy and Physiology and TMD, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi’an, 710032, China

2. Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, 145 Changlexi Road, Xi’an, 710032, China

3. Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

4. Department of Immunology, Fourth Military Medical University, Changle Western Road No.17, Xi’an, 710032, China

5. The State Lab of Oral Disease, Huaxi Dental School, Sichuang University, Chengdu, China

Abstract

Emerging evidence has implied that subchondral bone plays an important role during osteoarthritis (OA) pathology. This study was undertaken to investigate whether abnormalities of the condylar subchondral bone lead to temporomandibular joint (TMJ) OA. We used an osteoblast-specific mutant TGF-β1 transgenic mouse, the CED mouse, in which high levels of active TGF-β1 occur in bone marrow, leading to abnormal bone remodeling. Subchondral bone changes in the mandibular condyles were investigated by micro-CT, and alterations in TMJ condyles were confirmed by histopathological and immunohistochemical analysis. Abnormalities in the condylar subchondral bone, characterized as fluctuant bone mineral density and microstructure and increased but uncoupled activity of osteoclasts and osteoblasts, were apparent in the 1- and 4-month CED mouse groups, while obvious cartilage degradation, in the form of cell-free regions and proteoglycan loss, was observed in the 4-month CED group. In addition, increased numbers of apoptotic chondrocytes and MMP9- and VEGF-positive chondrocytes were observed in the condylar cartilage in the 4-month CED group, but not in the 1-month CED group, compared with their respective age-matched controls. This study demonstrated that progressive degradation of mandibular condylar cartilage could be induced by the abnormal remodeling of the underlying subchondral bone during TMJOA progression.

Publisher

SAGE Publications

Subject

General Dentistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3