FOXO3 Mediates Tooth Movement by Regulating Force-Induced Osteogenesis

Author:

Jin A.1ORCID,Hong Y.1,Yang Y.1,Xu H.1,Huang X.1,Gao X.1,Gong X.1,Dai Q.2,Jiang L.1

Affiliation:

1. Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China

2. The 2nd Dental Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China

Abstract

The high prevalence of malocclusion and dentofacial malformations means that the demand for orthodontic treatments has been increasing rapidly. As the biological basis of orthodontic treatment, the mechanism of mechanical force–induced alveolar bone remodeling during orthodontic tooth movement (OTM) has become the key scientific issue of orthodontics. It has been demonstrated that bone mesenchymal stem cells (BMSCs) are crucial for bone remodeling and exhibit mechanical sensing properties. Mechanical force can promote osteoblastic differentiation of BMSCs and osteogenesis, but the key factor that mediates mechanical force–induced osteogenesis during OTM remains unclear. In this study, by performing reverse-phase protein arrays on BMSCs exposed to mechanical force, we found that the expression level of forkhead box O3 (FOXO3) was significantly upregulated during the mechanical force–induced osteoblastic differentiation of BMSCs. The number of FOXO3-positive cells was consistently higher on the OTM side as compared with the control side and accompanied by the enhancement of osteogenesis. Remarkably, inhibiting FOXO3 with repaglinide delayed OTM by severely impairing mechanical force–induced bone formation in vivo. Moreover, knockdown of FOXO3 effectively inhibited the mechanical force–induced osteoblastic differentiation of BMSCs, whereas the overexpression of FOXO3 enhanced this effect. Mechanistically, we revealed a novel regulatory model in which FOXO3 promoted osteocalcin transcription by activating its promoter in cooperation with runt-related transcription factor 2 (RUNX2). We collectively obtained the first evidence that FOXO3 is critical for OTM, where it responds to mechanical force and directly regulates downstream osteoblastic differentiation in an efficient manner.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3