Inflammatory Bacteriome and Oral Squamous Cell Carcinoma

Author:

Perera M.12,Al-hebshi N.N.3ORCID,Perera I.4,Ipe D.125,Ulett G.C.25,Speicher D.J.267,Chen T.8,Johnson N.W.129

Affiliation:

1. School of Dentistry and Oral Health, Griffith University, Queensland, Australia

2. Menzies Health Institute Queensland, Griffith University, Queensland, Australia

3. Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA

4. Preventive Oral Health Unit, The National Dental Hospital (Teaching), Colombo, Sri Lanka

5. School of Medical Science, Griffith University, Queensland, Australia

6. Department of Laboratory Medicine, St. Joseph’s Healthcare Hamilton, Ontario, Canada

7. Department of Pathology and Molecular Medicine, McMaster University, Ontario, Canada

8. Department of Microbiology, Forsyth Institute, Cambridge, MA, USA

9. Dental Institute, King’s College London, UK

Abstract

Results from microbiome studies on oral cancer have been inconsistent, probably because they focused on compositional analysis, which does not account for functional redundancy among oral bacteria. Based on functional prediction, a recent study revealed enrichment of inflammatory bacterial attributes in oral squamous cell carcinoma (OSCC). Given the high relevance of this finding to carcinogenesis, we aimed here to corroborate them in a case-control study involving 25 OSCC cases and 27 fibroepithelial polyp (FEP) controls from Sri Lanka. DNA extracted from fresh biopsies was sequenced for the V1 to V3 region with Illumina’s 2 × 300–bp chemistry. High-quality nonchimeric merged reads were classified to the species level with a prioritized BLASTN-based algorithm. Downstream compositional analysis was performed with QIIME (Quantitative Insights into Microbial Ecology) and linear discriminant analysis effect size, while PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was utilized for bacteriome functional prediction. The OSCC tissues tended to have lower species richness and diversity. Genera Capnocytophaga, Pseudomonas, and Atopobium were overrepresented in OSCC, while Lautropia, Staphylococcus, and Propionibacterium were the most abundant in FEP. At the species level, Campylobacter concisus, Prevotella salivae, Prevotella loeschii, and Fusobacterium oral taxon 204 were enriched in OSCC, while Streptococcus mitis, Streptococcus oral taxon 070, Lautropia mirabilis, and Rothia dentocariosa among others were more abundant in FEP. Functionally, proinflammatory bacterial attributes, including lipopolysaccharide biosynthesis and peptidases, were enriched in the OSCC tissues. Thus, while the results in terms of species composition significantly differed from the original study, they were consistent at the functional level, substantiating evidence for the inflammatory nature of the bacteriome associated with OSCC.

Funder

Griffith University Higher Degree Scholarships for International Students

Manosha Perera and Irosha Perera

Australian Research Council

Publisher

SAGE Publications

Subject

General Dentistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3