Endothelial Tight Junctions Are Opened in Cholinergic-Evoked Salivation In Vivo

Author:

Cong X.1,Zhang Y.1,He Q.H.2,Wei T.3,Zhang X.M.3,Zhang J.Z.1,Xiang R.L.1,Yu G.Y.3,Wu L.L.1

Affiliation:

1. Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China

2. Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, P.R. China

3. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, P.R. China

Abstract

Blood vessels provide the original supplies for the formation of primary saliva, which is regulated by the tight junctions (TJs) between endothelial cells. Previous studies have shown that blood flow increases with vasodilatation during cholinergic-evoked salivation. However, changes in vascular paracellular permeability and the role of endothelial TJs in salivation are unknown. Here, we established an in vivo paracellular permeability detection system and observed that the endothelial TJs were permeable to 4-kDa fluorescein isothiocyanate (FITC)–dextran while impermeable to 40- and 70-kDa FITC-dextran under an unstimulated condition in mouse submandibular glands (SMGs). Pilocarpine increased the flux of 4- and 40-kDa FITC-dextran out of blood vessels but did not affect 70-kDa FITC-dextran. Claudin 5, a TJ protein specifically localized in salivary endothelial cells, was redistributed from the apicolateral membranes to the lateral and basolateral membranes and cytoplasm in cholinergic-stimulated mouse SMGs and freshly cultured human SMG tissues. In the transplanted SMGs from epiphora patients, we found that claudin 5 was present in the basolateral membranes and cytoplasm, instead of the apical region in control SMGs. Moreover, the level of phospho–myosin light chain 2 increased within the blood vessels of the pilocarpine-stimulated mouse SMGs and transplanted human SMGs, while the downstream molecule F-actin was reorganized in the endothelial cells of the transplanted human SMGs. Taken together, our findings provide direct visual evidence that the opening of endothelial TJs and the redistribution of claudin 5 are essential events contributing to cholinergic-evoked salivation, thus enriching our understanding of the secretory mechanisms that link blood flow to primary saliva formation by regulating the endothelial paracellular permeability.

Funder

Leading Academic Discipline Project of Beijing Education Bureau

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3