Reduced Autophagy in Aged Trigeminal Neurons Causes Amyloid β Diffusion

Author:

Sonoda R.12,Kuramoto E.2,Minami S.12,Matsumoto S.E.3,Ohyagi Y.4,Saito T.5,Saido T.6,Noguchi K.1,Goto T.2

Affiliation:

1. Department of Periodontology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan

2. Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan

3. Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan

4. Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Ehime, Japan

5. Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan

6. Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan

Abstract

The relationship between oral health and the development of Alzheimer’s disease (AD) in the elderly is not yet well understood. In this regard, the association between aging or neurodegeneration of the trigeminal nervous system and the accumulation of amyloid-β(1–42) (Aβ42) oligomers in the pathogenesis of AD is unknown. We focused on selective autophagy in the trigeminal mesencephalic nucleus (Vmes) and the diffusion of Aβ42 oligomers with respect to aging of the trigeminal nervous system and whether the degeneration of Vmes neurons affects the diffusion of Aβ42 oligomers. We used female 2- to 8-mo-old transgenic 3xTg-AD mice and App NL-G-F knock-in mice and immunohistochemically examined aging-related changes in selective autophagy and Aβ42 oligomer processing in the Vmes, which exhibits high amyloid-β (Aβ) expression. We induced degeneration of Vmes neurons by extracting the maxillary molars and examined the changes in Aβ42 oligomer kinetics. Autophagosome-like membranes, which stained positive for Aβ, HO-1, and LC3B, were observed in Vmes neurons of 3xTg-AD mice, while there was weak immunoreactivity of the membranes for intraneuronal Aβ in App NL-G-F mice. By contrast, there was strong immunopositivity for extracellular Aβ42 oligomers with the formation of Aβ42 oligomer clusters in App NL-G-F mice. The expression of Rubicon, which indicates age-related deterioration of autophagy, increased the diffusion of Aβ42 oligomer with the age of Vmes neurons. Tooth extraction increased the extracellular immunopositivity for Aβ42 oligomers in App NL-G-F mice. These results suggest that autophagy maintains homeostasis in Vmes neurons and that deterioration of autophagy due to aging or neurodegeneration leads to the diffusion of Aβ42 oligomers into the extracellular space and possibly the development of AD.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3