Circ-Slain2 Alleviates Cartilage Degradation and Inflammation of TMJOA

Author:

Pan X.12,Zhao Z.12,Huang X.12,Cen X.13ORCID

Affiliation:

1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China

2. Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China

3. Department of Temporomandibular joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China

Abstract

Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease with the cessation of matrix anabolism and aggravation of inflammation, which results in severe pain and impaired joint function. However, the mechanisms are not well understood. Circular RNAs (circRNAs) are reported to have various biological functions and participate in the development, diagnosis, prognosis, and treatment of different diseases. This study aimed to investigate the roles and mechanisms of circ-slain2 in TMJOA. We first established TMJOA mouse models and found circ-slain2 was lowly expressed in the cartilage of TMJOA through sequencing data. We observed that circ-slain2 is predominantly localized in the cytoplasm and downregulated in mouse condylar chondrocytes (mCCs) treated with tumor necrosis factor α (TNFα) and interferon γ (IFNγ). Micro–computed tomography and histological examination showed that intra-articular injection of circ-slain2 overexpressing adeno-associated virus could alleviate cartilage catabolism and synovial inflammation to relieve TMJOA in vivo. In addition, elevated circ-slain2 also showed anticatabolic and anti-inflammatory effects on IFNγ- and TNFα-stimulated mouse condylar chondrocytes (mCCs). Functional enrichment analysis indicated that protein processing in endoplasmic reticulum (ER) was associated with TMJOA, and further functional experiments confirmed that circ-slain2 could suppress ER stress in OA mCCs. RNA binding protein immunoprecipitation assay revealed an overt interaction between activating transcription factor 6 (ATF6) and circ-slain2. Inhibition of the expression of both ATF6 and circ-slain2 resulted in dilation of the ER and enhanced the expression of ER stress markers, whose ER stress level was higher than inhibition of ATF6 but lower than knockdown of circ-slain2 expression. Collectively, our research demonstrated that circ-slain2 could regulate ATF6 to relieve ER stress, reducing temporomandibular joint cartilage degradation and synovial inflammation. These findings provide prospects for developing novel osteoarthritis therapies based on circ-slain2 by focusing on reducing the inflammation of synovium and the imbalance between matrix synthesis and degradation.

Funder

west china school of stomatology, sichuan university

China Postdoctoral Science Foundation

sichuan province science and technology support program

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3