Quantification of Periapical Bone Destruction in Mice by Micro-computed Tomography

Author:

Balto K.1,Muller R.2,Carrington D.C.2,Dobeck J.3,Stashenko P.4

Affiliation:

1. Department of Cytokine Biology, Department of Endodontics, Harvard School of Dental Medicine

2. Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA

3. Department of Histology, Forsyth Institute, 140 Fenway, Boston, MA 02115

4. Department of Cytokine Biology

Abstract

Bacterial infections of the dental pulp result in tissue destruction and periapical bone resorption. The availability of genetically engineered mouse strains is a major advantage in the use of this model system for studies of periapical pathogenesis. The main limitation of the mouse model is its small size, and the necessity for laborious histologic analyses to quantify periapical bone destruction. In the present study, we evaluated the use of a new technology, high-resolution micro-computed tomography (micro-CT), for the rapid and non-invasive quantification of periapical bone destruction. Periapical lesions were induced in the lower first molars of mice by exposing the pulp to the oral environment. Mandibles were harvested on day 21 after pulp exposure, and were subjected to micro-CT analysis, with 17-μm-thick radiographic sections. Samples were then decalcified, embedded, and sectioned for histology. The cross-sectional area of periapical lesions was determined by image analysis of corresponding micro-CT and histologic sections. The results showed a highly significant correlation between micro-CT and histology (p < 0.0001), with mean differences of 4.1% (range, 0.9 to 7.2%) between the two methods. The mean error associated with image analysis was 4.9% for images obtained by both micro-CT and histology. The variability of replicate (n = 5) independent micro-CT determinations was 3.4%, less than that associated with the image analysis error. These results demonstrate that micro-CT imaging is a rapid, reproducible, and non-invasive method, that gives results that are closely comparable with those obtained by histology. Micro-CT appears to have utility for the accurate quantification of changes in bone architecture in small biological specimens.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3