Dimeric Proanthocyanidins on the Stability of Dentin and Adhesive Biointerfaces

Author:

Leme-Kraus A.A.1,Phansalkar R.S.2,dos Reis M.C.1,Aydin B.1,Sousa A.B.S.1,Alania Y.1,McAlpine J.2,Chen S.N.2,Pauli G.F.2,Bedran-Russo A.K.1ORCID

Affiliation:

1. Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA

2. Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA

Abstract

A dentin biomodification strategy with selective proanthocyanidin (PAC)–enriched extracts reinforces dentin and dentin-resin interfaces. Enrichment of the extracts according to the degree of polymerization allows exploration of bioactive principles of PACs and structure-activity relationships. This study investigated the sustained dentin matrix biomodification and dentin-resin bioadhesion of 2 fractions consisting exclusively of B-type PAC dimers with or without a single galloyl motif (specifically, DIMERG and DIMERNG) and their precursor material, enriched grape seed extract (e-GSE; Vitis vinifera). The biomodification potential was determined by long-term evaluation of the apparent modulus of elasticity and collagen solubility (hydroxyproline release). Chemical characterization of the dentin matrix was performed by attenuated total reflectance–Fourier-transform infrared spectroscopy. The bioadhesive properties were assessed by a microtensile bond strength test at different time points, and macro-hybrid layers were produced to verify the degree of conversion of the adhesive resin. Fractions consisting of DIMERG, DIMERNG, and their precursor, e-GSE, increased the modulus of elasticity at all time points and reduced collagen degradation. Specimens treated with DIMERNG remained stable throughout 12 mo of storage, whereas a significant drop in the modulus of elasticity was observed for the DIMERG and e-GSE groups at 6 mo. The fractions and precursor did not affect the degree of resin conversion at the hybrid layer. Changes in infrared resonances corresponding to collagen cross-links in the dentin matrix occurred for all treatments. Higher bond strength was observed for dentin treated with e-GSE as compared with DIMERG and DIMERNG; all biointerfaces remained stable after 12 mo. Nongalloylated PACs mediate stable dentin biomodification, which includes protective activity against collagen degradation and reinforcement of the anchoring dentin matrix. Collectively, PACs with a higher degree of oligomerization offer a robust bioadhesion between the hydrophilic dentin matrix and the hydrophobic adhesive.

Funder

National Institute of Dental and Craniofacial Research

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3