Decellularized Swine Dental Pulp Tissue for Regenerative Root Canal Therapy

Author:

Alqahtani Q.1ORCID,Zaky S.H.123,Patil A.1,Beniash E.134,Ray H.145,Sfeir C.134

Affiliation:

1. Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA

2. Department of Restorative Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA

3. Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA

4. McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA

5. Department of Endodontics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA

Abstract

In the current theme of dental pulp regeneration, biological and synthetic scaffolds are becoming a potential therapy for pulp revitalization. The goal is to provide a suitable environment for cellular infiltration, proliferation, and differentiation. The extracellular matrix (ECM) represents a natural scaffold material resembling the native tissue chemical and mechanical properties. In the past few years, ECM-based scaffolds have shown promising results in terms of progenitor cells recruitment, promotion of constructive remodeling, and modulation of host response. These properties make ECM-derived scaffolds an ideal candidate for pulp regenerative therapy. Development of strategies for clinically relevant tissue engineering using dental pulp extracellular matrix (DP-ECM) can provide an alternative to conventional root canal treatment. In this work, we successfully decellularized ECM derived from porcine dental pulp. The resulting scaffold was characterized using immunostaining (collagen type I, dentin matrix protein 1, dentin sialoprotein, and Von Willebrand factor) and enzyme-linked immunosorbent assay (transforming growth factor β, vascular endothelial growth factor, and basic fibroblast growth factor) for extracellular proteins where the ECM retained its proteins and significant amount of growth factors. Furthermore, a pilot in vivo study was conducted where the matrix was implanted for 8 wk in a dog root canal model. Our in vitro and preliminary in vivo data show that the decellularized ECM supports cellular infiltration together with the expression of pulp-dentin and vascular markers (DSP and CD31) compared to the controls. Herein, we show the feasibility to produce a decellularized ECM scaffold and validate the concept of using ECM-based scaffolds for pulp regeneration.

Funder

The American Association of Endodontists

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3