Nano-Layering Adds Strength to the Adhesive Interface

Author:

Yoshihara K.12,Nagaoka N.3,Nakamura A.4,Hara T.4,Yoshida Y.5,Van Meerbeek B.6

Affiliation:

1. National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Takamatsu, Japan

2. Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Department of Pathology & Experimental Medicine, Okayama, Japan

3. Okayama University Dental School, Advanced Research Center for Oral and Craniofacial Sciences, Okayama, Japan

4. National Institute for Materials Science (NIMS), Electron Microscopy Analysis Station, Ibaraki, Japan

5. Hokkaido University, Faculty of Dental Medicine, Department of Biomaterials and Bioengineering, Sapporo, Hokkaido, Japan

6. KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium

Abstract

X-ray diffraction (XRD) surface analysis and ultrastructural interfacial characterization using transmission electron microscopy (TEM) confirmed that the functional monomer 10–methacryloyloxydecyl dihydrogen phosphate (10-MDP) self-assembles into nano-layers at adhesive-tooth interfaces. Self-assembled nano-layering is thought to contribute to the durability of bonding to tooth dentin, although this has not been proven yet. In order to disclose this potential bond-durability contribution of nano-layering, we observed the 3-dimensional (3D) spreading of nano-layering by a series of focused-ion-beam (FIB) milled cross sections by scanning electron microscopy (FIB-SEM) and examined the mechanical properties of self-assembled nano-layering using scanning probe microscopy (SPM). A commercial 10-MDP-containing 3-step self-etch adhesive partially demineralized dentin up to submicron depth, forming a submicron hydroxyapatite-rich hybrid layer. TEM chemically and ultrastructurally confirmed the formation of interfacial nano-layering. FIB-SEM 3D reconstructions disclosed a 3D network of self-assembled nano-layering extending from the hybrid layer up to within the adjacent adhesive-resin layer. SPM revealed that nano-layering within the adhesive-resin layer possessed a higher elastic modulus than that of the surrounding adhesive resin, hereby suggesting that nano-layering contributes to the mechanical strength of adhesives like filler particles do. Nano-layering’s 3D expanded structure is expected to strengthen the surrounding resin, as well to better interconnect the adhesive-resin layer to the hybrid layer. In conclusion, this exploratory study demonstrated that nano-layering constitutes a strong phase at the adhesive interface, which may contribute to the clinical longevity of the 10-MDP-based bond to dentin.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3