Ethanol Extracts of Dietary Herb, Alpinia nantoensis, Exhibit Anticancer Potential in Human Breast Cancer Cells

Author:

Kuo Ching-Ying1,Weng Teng-Song12,Kumar K. J. Senthil3,Tseng Yen-Hsueh3,Tung Ta-Wei1,Wang Sheng-Yang34,Wang Hui-Chun156ORCID

Affiliation:

1. Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan

2. Chi Mei Medical Center, Liouying, Tainan 73657, Taiwan

3. Department of Forestry, National Chung-Hsing University, Taichung 40227, Taiwan

4. Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan

5. Department of Medical Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan

6. Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan

Abstract

Recent advances in mammography screening, chemotherapy, and adjuvant treatment modalities have improved the survival rate of women with breast cancer. Nevertheless, the breast tumor with metastatic progression is still life-threatening. Indeed, combination therapy with Ras-ERK and PI3K inhibitors is clinically effective in malignant breast cancer treatment. Constituents from genus Alpinia plants have been implicated as potent anticancer agents in terms of their efficacy of inhibiting tumor cell metastasis. In this study, we tested the effects of ethanol extracts of Alpinia nantoensis (rhizome, stem, and leaf extracts) in cultured human breast cancer cells and particularly focused on the Ras-ERK and PI3K/AKT pathways. We found that the rhizome and leaf extracts from A nantoensis inhibited cell migration, invasion, and sphere formation in MCF-7 and MDA-MB-231 cells. The potency was extended with the inhibition of serum-induced PI3K/AKT and Ras-ERK activation and epidermal growth factor (EGF)-mediated EGFR activation in MDA-MB-231 cells. These results indicate that extracts of A nantoensis could inhibit signal transduction at least involved in EGFR as well as the PI3K/AKT and Ras-ERK pathways, which are crucial players of tumor cell migration and invasion. Our study strongly supports that the extracts of A nantoensis could be a novel botanical drug lead for the development of an antimetastatic agent for the treatment of human malignant breast cancer.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Oncology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3