Research on energy consumption evaluation and energy-saving design of cranes in service based on structure-mechanism coupling

Author:

Qu Xiaogang1,Zhao Maojie1ORCID,Qi Qisong1ORCID

Affiliation:

1. Taiyuan University of Science and Technology, Taiyuan, China

Abstract

Aiming at the problem that the life cycle energy consumption index of hoisting machinery is difficult to be objectively quantified, a crane energy consumption evaluation calculation method based on the working cycle of the service period is proposed, the typical service working mode of the crane is analyzed, and the working cycle process of the mechanism is clarified. On this basis, the stress cycle characteristics of the crane structure during the service period are determined based on the coupling relationship between the mechanism and the structure, which lays the foundation for accurately evaluating the life index of the crane. According to the relationship between the load rate and effective power of each mechanism during the service period of the crane, the calculation method for the evaluation and calculation of the structure energy consumption during the service period of the crane is studied. Finally, the crane is designed based on the concept of absolute service safety, and an optimal design model of the main girder structure of the crane with the goal of the lowest energy consumption in service is established. Using the research method of this paper to study a certain type of bridge crane, the energy consumption of the hoisting machinery during its service period is not only related to the accumulation of the operating characteristics of the mechanism but also related to the characteristic parameters such as the structure self-weight. The comprehensive evaluation of energy consumption provides an effective quantitative method and a reliable green design theory for crane design.

Funder

Research and development of precision manufacturing technology for key parts of heavy-duty electric cylinders

Research on the life-cycle-oriented mechanism-structure co-choke coupling mechanism and green index quantification method of lifting machinery

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3