Affiliation:
1. Anhui Key Laboratory of Mine Intelligent Equipment and Technology, Anhui University of Science and Technology, Huainan, China
2. School of Mechanical Engineering, Anhui University of Science and Technology, Huainan, China
Abstract
The brake disc spindle of the electromechanical braking system will be accompanied by vibration unbalanced fault during the rotation operation, which will affect the braking performance of the brake system. In view of this phenomenon, based on the ensemble empirical mode decomposition algorithm and related energy operation theory, an offline purification program for the unbalanced axial trajectory of the spindle of electromechanical braking system are designed. Meanwhile, an online braking control feedback procedure for the axial trajectory are designed based on Cspace controller. Based on the designed program and braking theory, an experimental bench of the electro-mechanical braking system was set up, and experiments were conducted on the purification of the axial trajectory and the braking of the fault feedback respectively. The results show that the EEMD algorithm and the related energy operation theory can purify the unbalanced axial trajectory of the brake discs of the braking system and draw an ideal axial trajectory fault map; meanwhile, the experimental data of the fault feedback braking shows that the time required from the unbalanced fault monitoring to the completion of the braking process of the braking system is 1.278 s, which can effectively achieve the purpose of emergency braking in case of sudden failure. Through research, a new idea is provided for the development of electro-mechanical braking system fault detection and feedback.
Funder
national natural science foundation of china
Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献