Simulation analysis of multi-ring interference assembly of large capacity composite flywheel rotor

Author:

Qu Wenhao1,Wang Zezheng2,Song Shunyi1,Teng Wei2ORCID,Liu Yibing2ORCID

Affiliation:

1. Shenzhen Energy Nanjing Holding Co., Ltd, Nanjing, China

2. College of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, China

Abstract

The large-capacity power flywheel energy storage system serves as a high-quality frequency modulation resource for the power system. Utilizing high-strength, low-density composite materials in the manufacture of flywheel rotors is a primary method for enhancing flywheel energy storage. In this paper, we focus on the large-size multi-ring composite flywheel rotor. Based on the elastic theory, the stress distribution formula of the anisotropic material rotor rim under high-speed rotation is derived. Based on the stress superposition principle, the stress analysis formula under the interference fit of the composite rim and the metal hub is obtained, and the analytical solution is given. Based on the radial displacement of each ring, a suitable amount of interference is determined. Subsequently, a finite element analysis model for the interference fit between the composite rim and the metal hub is established. The stress distribution of the rotor is simulated and analyzed. The simulation results are basically consistent with the analytical results, which verifies the rationality of the model. Finally, we analyze and compare the difference between multi-ring isomorphism and multi-ring isomerism, and then the applicability of the analytical solution and simulation solution to the stress distribution of three-ring and four-ring composite flywheel rotor is further verified. The results demonstrate that, for large-size composite flywheels, existing formula analysis calculations and finite element simulation calculations align, highlighting a need for experimental verification in future research.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3