Multi-axial large-scale testing of a 34 m wind turbine blade section to evaluate out-of-plane deformations of double-curved trailing edge sandwich panels within the transition zone

Author:

Waldbjørn Jacob P1ORCID,Buliga Andrei2,Berggreen Christian1,Jensen Find Moelholt2

Affiliation:

1. Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark

2. Bladena ApS, Roskilde, Denmark

Abstract

Transverse cracks in the double curved trailing edge panels within the transition zone are among one of the increasingly encountered in-field damages found on wind turbine blades today. Believed to be root cause of these transverse cracks, are the out-of-plane deformation of the double curved trailing edge pressure side panels. These deformations are evaluated on the inner 15 m section of a 34 m wind turbine blade – referred to here as the root section. Through a parametrical study the free end of the root section is loaded in the quasi-static regime comprising edgewise loading (Fy) and torsional moment (Mz) around the longitudinal axis of the blade. The root section is through a multi-scale numerical analysis found to exhibit representative structural behavior in terms of out-of-plane deformations within the area of interest. A combination between Fy and Mz are found to generate the highest peak-to-peak out-of-plane deformation of 15.9 mm.

Funder

The Danish Energy Technology Development and Demonstration program

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single-component multi-rate real time hybrid simulation pilot test on a composite structure;Engineering Structures;2024-02

2. Torsional Effects on Wind Turbine Blades and Impact on Field Damages;IOP Conference Series: Materials Science and Engineering;2023-11-01

3. Structural transverse cracking mechanisms of trailing edge regions in composite wind turbine blades;Composite Structures;2023-03

4. AE health monitoring technique for composite wind turbine blade: a state-of-art review;Acoustic Emission Signal Analysis and Damage Mode Identification of Composite Wind Turbine Blades;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3