Lentiviral-mediated ephrin B2 gene modification of rat bone marrow mesenchymal stem cells

Author:

Zhu Min1ORCID,Hua Yu1,Tang Jian1,Zhao Xiaoke1,Zhang Ling1,Zhang Yue1

Affiliation:

1. Department of Rehabilitation, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China

Abstract

Objective To determine the effect of the upregulation or knockdown of the ephrinB2 ( Efnb2) gene and the effect of EphB4/EphrinB2 signalling in rat bone marrow mesenchymal stem cells (BMSCs). Methods Rat BMSCs were infected with lentivirus vectors carrying EphrinB2 and shRNA-EphrinB2. EphrinB2 mRNA and protein levels were quantified. At 28 days of culture with neuronal cell-conditioned differentiation medium, levels of microtubule-associated protein 2 (MAP2), CD133 and nestin were detected in EphrinB2/BMSCs and shEphrinB2/BMSCs using quantitative polymerase chain reaction and immunofluorescence. The ability of these cells to migrate was evaluated using a transwell assay. Results BMSCs were successfully isolated as indicated by their CD90+ CD29+ CD34– CD45– phenotype. Three days after ephrinB2 transduction, BMSC cell bodies began to shrink and differentiate into neuron-like cells. At 28 days, levels of MAP2, CD133 and nestin, as well as the number of migratory cells, were higher in lenti-EphrinB2-BMSCs than in the two control groups. The shEphrinB2/BMSCs had reduced levels of MAP2, CD133 and nestin; and a lower rate of cell migration. Similarly, increased levels of Grb4 andp21-activated kinase in the EphB4/EphrinB2 reverse signalling pathway were observed by Western blot. Conclusions LV-EphrinB2 can be efficiently transduced into BMSCs, which then differentiate into neuron-like cells.

Publisher

SAGE Publications

Subject

Biochemistry (medical),Cell Biology,Biochemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3