MicroRNA-22-3p alleviates atherosclerosis by mediating macrophage M2 polarization as well as inhibiting NLRP3 activation

Author:

Bian Xiaoyan12,Peng Haoyang1,Wang Yin3,Guo Hongjiang1,Shi Gaofeng1ORCID

Affiliation:

1. Department of Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China

2. Department of Ultrasound, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China

3. Department of Orthopaedics, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China

Abstract

Objective MicroRNA (miR)-22-3p is expressed in atherosclerosis (AS), but its function and regulatory mechanisms remain unclear. Therefore, the effects of miR-22-3p in AS were assessed in this study. Methods MiR-22-3p expression was assessed in AS, and miR-22-3p target genes were predicted using sequencing transcriptomics. The effect of miR-22-3p agomir on atherosclerotic lesions in an AS mouse model were determined by Oil red O, Masson’s, and sirius red staining, and by anti-smooth muscle actin and macrophage antigen-3 immunostaining. Gene expression in AS was evaluated by western blot and immunofluorescence. Results MiR-22-3p was expressed in AS and control samples (32.5% and 33.9% levels, respectively, relative to total miRNA among six highly expressed miRNAs). In the mouse model of AS, miR-22-3p agomir significantly reduced lipid deposition, proliferation of aortic collagen fibres, and macrophage content. Additionally, inducible nitric oxide synthase, interleukin-6, and tumour necrosis factor-α levels were significantly reduced, and levels of arginase 1 and CD206 were significantly enhanced. MiR-22-3p was found to target janus kinase 1( JAK1), and significantly inhibited the activation of NLR family pyrin domain containing 3 (NLRP3) and JAK1 in mice. Conclusions MiR-22-3p appears to reduce the inflammatory response in AS, which might be achieved by inducing the M2 macrophage phenotype and suppressing NLRP3 activation via JAK1.

Publisher

SAGE Publications

Subject

Biochemistry (medical),Cell Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3