Reduced graphene oxide–reinforced gellan gum thermoresponsive hydrogels as a myocardial tissue engineering scaffold

Author:

Zargar Seyed Mohammad1,Mehdikhani Mehdi1ORCID,Rafienia Mohammad2

Affiliation:

1. Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran

2. Biosensor Research Center (BRC), Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Myocardial infarction is one of the most prevalent diseases around the world. Cardiac tissue engineering is a new approach to repair and revive the structure and functionality of cardiac damaged tissue. In this study, gellan gum/reduced graphene oxide composite hydrogels were fabricated, characterized, and evaluated. The hydrogels were prepared using the solvent casting method and characterized via scanning electron microscopy and Fourier-transform infrared spectroscopy. Compressive mechanical analysis, injectability as well as electrical conductivity test were run. Furthermore, water swelling and degradation analyses were conducted. MTT assay was performed using rat myoblasts (H9C2) to determine the cytotoxicity of our samples. Results showed that reduced graphene oxide fillers dispersed acceptably and enhanced the compressive modulus and electrical conductivity of gellan gum hydrogels. However, in this regard, compressive strength and ductility were not significantly boosted with reduced graphene oxide addition. The water-swelling ratio (%) rised in the presence of reduced graphene oxide, whereas the degradation rate was not significantly affected by them. Meanwhile, synthesized hydrogels showed suitable injectability. MTT assay results revealed that gellan gum hydrogels containing 1% and 2% reduced graphene oxide were not cytotoxic. According to the findings, gellan gum/2% reduced graphene oxide composite hydrogel can be a promising candidate for repairing and healing infarcted myocardial tissue.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3