Effect of chemical structure on properties of polyurethanes: Temperature responsiveness and biocompatibility

Author:

Komez Aylin12,Buyuksungur Senem12,Hasirci Vasif123,Hasirci Nesrin124

Affiliation:

1. BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey

2. Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey

3. Department of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey

4. Department of Chemistry, Middle East Technical University (METU), Ankara, Turkey

Abstract

Polyurethanes are known as one of the most biocompatible and inherently blood-compatible materials and have a wide range of applications in the medical field due to their controllable structure and properties. Durability, elasticity, elastomeric structure, fatigue resistance, versatility, and easy acceptance by the biological media after the application makes these polymers preferable in medical area. In this study, polyurethane films were prepared using poly(propylene-ethylene glycol) and either toluene-2,4-diisocyanate or 4,4′-methylenediphenyl diisocyanate without adding any other ingredients such as solvent, catalyst, or chain extender to prevent negative effects of leachable molecules. Mechanical tests were performed at room temperature while swelling tests were conducted in water and phosphate-buffered saline at 4°C, 25°C, and 37°C. Temperature responsiveness was observed for the samples synthesized using toluene-2,4-diisocyanate and poly(propylene-ethylene glycol). These samples had more than 100% swelling at 4°C and about 4% swelling at 25°C and 37°C. Cytocompatibility tests were performed by culturing the samples and their extracts with mouse fibroblast cells (L929). Viability of human umbilical vein endothelial cells was studied to examine the compatibility of the films for blood contacting devices. Both toluene-2,4-diisocyanate and 4,4-methylenediphenyl diisocyanate–based polyurethane films showed no cytotoxic effect and good biocompatibility. Oxygen plasma treatment enhanced hydrophilicity of the films. After plasma treatment, human umbilical vein endothelial cell attachment on toluene-2,4-diisocyanate–based polyurethane films improved and 4,4-methylenediphenyl diisocyanate–based polyurethane films maintained their high cell affinity. Polyurethanes presenting temperature responsiveness, high biocompatibility, and high affinity for human umbilical vein endothelial cells were synthesized in medical purity and in a reaction media involving only diisocyanate and diol components without addition of any solvent, chain extender, or catalyst. Polyurethanes with these properties and as produced in this study are reported for the first time in the literature.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3