Acid-labile poly(ethylene glycol) shell of hydrazone-containing biodegradable polymeric micelles facilitating anticancer drug delivery

Author:

Xu Jing1,Qin Benkai1,Luan Shujuan1,Qi Peilan1,Wang Yingying1,Wang Kai1,Song Shiyong1

Affiliation:

1. Institute of Pharmacy, Henan University, Kaifeng, China

Abstract

Biodegradable pH-sensitive amphiphilic block polymer (mPEG-Hyde-PLGA) was synthesized via ring-opening polymerization, initiated from a hydrazone-containing macro-initiator. In this way, a pH-sensitive hydrazone bond was inserted into the backbone of block copolymer, linking hydrophilic poly(ethylene glycol) segment and hydrophobic poly(lactic-co-glycolic acid) segment. The copolymer self-assembled to form stable micelles with mean diameters below 100 nm and served as a drug delivery system for doxorubicin, with drug loading content of 5.3%. pH sensitivity of the hydrazone-containing micelles was investigated by changes in diameter and size distribution observed by dynamic light scattering measurements when the micelles were encountered to acidic medium. Small pieces and larger aggregates were found by transmission electron microscopy resulting from the disassociation of the micelles in acidic conditions. It was also noted that doxorubicin release from the pH-sensitive micelles is significantly faster at pH 4.0 and pH 5.0 compared to pH 7.4, while almost no difference was detected in the case of pH non-sensitive micelles. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays on HepG-2 and MCF-7 cells revealed that doxorubicin-loaded pH-sensitive micelles had higher antitumor activity than pH-insensitive ones. This pH-sensitive drug delivery system based on hydrazone-containing block copolymer has been proved as a promising drug formulation for cancer therapy.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3