Effect of pH on salicylic acid-based poly(anhydride-ester): Implications for polymer degradation and controlled salicylic acid release

Author:

Gulrajani Sammy1,Snyder Sabrina2,Hackenberg Jason D.3,Uhrich Kathryn4ORCID

Affiliation:

1. Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, USA

2. Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA

3. Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA

4. Department of Chemistry, University of California-Riverside, Riverside, CA, USA

Abstract

Salicylic acid (SA)-based poly(anhydride-esters) (SAPAEs) hydrolytically degrade to release SA in a controlled manner over extended time periods. While these polymers have been well investigated under in vivo conditions, this study is the first detailed, systematic assessment of in vitro polymer degradation over a range of pH values. To investigate the effect of pH conditions on SAPAE degradation, in vitro degradation studies were conducted on SAPAE disks over a wide pH range (2.0, 4.0, 6.0, 7.4, 8.0, 9.0, and 10.0) for 30 days. Several parameters were evaluated, including SA concentrations in the degradation media, polymer mass loss, water uptake in the polymer matrices, and SA solubility at different pH values to substantiate SA release results and characterize the in vitro polymer degradation process. Complete SA release was achieved at more basic conditions (pH 9.0 and 10.0) over 9 days, whereas less than 41% SA was released over the same time period at neutral pH conditions (pH 8.0 and 7.4). By comparison, SA release was minimal in acidic pH conditions. Overall, we present quantitative data of polymer degradation as defined by SA in vitro release, which increased with increasing pH values. More basic conditions promoted polymer degradation, whereas acidic conditions minimized polymer degradation.

Funder

National Institutes of Health

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3