Optimization of sterilization methods for electrospun poly(ε-caprolactone) to enhance pre-osteoblast cell behaviors for guided bone regeneration

Author:

Dai Yun12,Xia Yang13,Chen Han-Bang1,Li Na1,Chen Gang1,Zhang Fei-Min14,Gu Ning4

Affiliation:

1. Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China

2. Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China

3. Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China

4. Suzhou Key Laboratory of Biomaterials and Technologies & Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China

Abstract

The aim of this study was to determine the optimal sterilization procedure for biodegradable polyester-based guided bone regeneration membranes. The effects of sterilization using low-temperature hydrogen peroxide gas plasma, 75% ethanol (EtOH; two soaking times), and ultraviolet radiation on the structure and biological properties of electrospun poly(ε-caprolactone) membranes were investigated. The results demonstrated that all were effective sterilization methods. The membranes were then assessed for surface structure, wettability, and in vitro cellular responses including osteogenic differentiation by seeding with pre-osteoblasts (MC3T3-E1 cells). The cells grew well on all the sterilized membranes. The low-temperature hydrogen peroxide gas plasma–sterilized membranes, which exhibited significantly improved hydrophilicity ( p < 0.05), were better for cell osteogenic differentiation compared to the membranes sterilized by other methods. In addition, the cell behavior on the membranes sterilized by EtOH was superior to those sterilized by ultraviolet radiation. Finally, EtOH soaking time appeared to influence cell behavior. The results suggested that low-temperature hydrogen peroxide gas plasma treatment is the most promising method to sterilize electrospun poly(ε-caprolactone) membranes for guided bone regeneration.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3