Trust in Automation

Author:

Hoff Kevin Anthony1,Bashir Masooda1

Affiliation:

1. University of Illinois at Urbana-Champaign

Abstract

Objective: We systematically review recent empirical research on factors that influence trust in automation to present a three-layered trust model that synthesizes existing knowledge. Background: Much of the existing research on factors that guide human-automation interaction is centered around trust, a variable that often determines the willingness of human operators to rely on automation. Studies have utilized a variety of different automated systems in diverse experimental paradigms to identify factors that impact operators’ trust. Method: We performed a systematic review of empirical research on trust in automation from January 2002 to June 2013. Papers were deemed eligible only if they reported the results of a human-subjects experiment in which humans interacted with an automated system in order to achieve a goal. Additionally, a relationship between trust (or a trust-related behavior) and another variable had to be measured. All together, 101 total papers, containing 127 eligible studies, were included in the review. Results: Our analysis revealed three layers of variability in human–automation trust (dispositional trust, situational trust, and learned trust), which we organize into a model. We propose design recommendations for creating trustworthy automation and identify environmental conditions that can affect the strength of the relationship between trust and reliance. Future research directions are also discussed for each layer of trust. Conclusion: Our three-layered trust model provides a new lens for conceptualizing the variability of trust in automation. Its structure can be applied to help guide future research and develop training interventions and design procedures that encourage appropriate trust.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3