Graphene/hydroxyapatite coating deposit on titanium alloys for implant application

Author:

·Baheti Wufanbieke123ORCID,Lv ShangYi13,Mila 13,Ma Lisha13,·Amantai Dumanbieke13,Sun Hao13,He HuiYu13

Affiliation:

1. Department of Prosthodontics, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China

2. People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China

3. Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China

Abstract

Titanium (Ti) implants are widely used in medicine. Meanwhile, surface modification of Ti can strengthen the osseointegration of implants. In this study, we modified Ti implant surfaces, which was coated with GO, HA, HA-2wt%GO and HA-5wt%GO via electrophoresis deposition, to investigate their mechanisms and biological activity. Uncoated Ti was used as the control. Further, we examined the biological behavior and osteogenic performance of mouse bone marrow mesenchymal stem cells (BMSCs) cultured on coatings in vitro. We found that the HA-GO nanocomposite coating improved the roughness and hydrophilicity of the Ti surface. Compared with the uncoated Ti or Ti modified by HA or GO alone, cell adhesion and diffusion were enhanced on HA-GO-modified Ti surfaces. In addition, the proliferation and osteogenic differentiation of BMSCs in vitro were significantly improved on HA-GO-modified surfaces, whereas osteogenesis-related gene expression and alkaline phosphatase activity were slightly enhanced. Furthermore, we noted that bone regeneration was improved in the HA-2wt%GO group in vivo. Thus, the HA-2wt%GO nanocomposite coating might have potential applications in the field of dental implants.

Funder

Science and Technology Department of Xinjiang Uyghur Autonomous Region

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3