Hydroxyapatite-incorporation improves bone formation on endosseous PEEK implant in canine tibia

Author:

Geng Yuan-ming1ORCID,Ren Dong-ni23,Li Shu-yi4,Li Zong-yi2,Shen Xiao-qing1,Yuan Yu-yu2

Affiliation:

1. Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China

2. Medprin Regenerative Medical Technologies Co., Ltd., Guangzhou, China

3. School of Materials Science and Engineering, South China University of Technology, Guangzhou, China

4. Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, The Netherlands

Abstract

Background: Poly Ether Ether Ketone (PEEK) has been considered as a potential alternative material for endosseous dental implants, for its low elastic modulus, biocompatibility, and low cost in customized device manufacture. Hydroxyapatite-incorporation is supposed to improve the poor osseointegration of PEEK. Methods: In the present study we analyzed the in vivo response of hydroxyapatite-incorporated PEEK (PEEK-HA) implants in canine tibia. PEEK-HA and PEEK implants were implanted and were examined 4 weeks and 12 weeks after implantation with radiology and histology. Commercial titanium dental implants served as controls. Results: The ratio of bone volume to tissue volume of PEEK-HA implants was higher than that of PEEK implants 4 weeks after implantation in the μ-CT analysis. The bone implant contact of PEEK and PEEK-HA implants showed no statistical difference in the histological examination, but newly-formed bone around PEEK-HA implants showed more signs of mineralization than that around PEEK implants. Conclusion: The study suggested that bone formation was improved with hydroxyapatite-incorporation in PEEK. Hydroxyapatite-incorporated PEEK implants may represent a potential material for endosseous dental implant.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3