Comparing the Performance of Eight Item Preknowledge Detection Statistics

Author:

Belov Dmitry I.1

Affiliation:

1. Law School Admission Council, Newtown, PA, USA

Abstract

Item preknowledge describes a situation in which a group of examinees (called aberrant examinees) have had access to some items (called compromised items) from an administered test prior to the exam. Item preknowledge negatively affects both the corresponding testing program and its users (e.g., universities, companies, government organizations) because scores for aberrant examinees are invalid. In general, item preknowledge is hard to detect due to multiple unknowns: unknown groups of aberrant examinees (at unknown test centers or schools) accessing unknown subsets of items prior to the exam. Recently, multiple statistical methods were developed to detect compromised items. However, the detected subset of items (called the suspicious subset) naturally has an uncertainty due to false positives and false negatives. The uncertainty increases when different groups of aberrant examinees had access to different subsets of items; thus, compromised items for one group are uncompromised for another group and vice versa. The impact of uncertainty on the performance of eight statistics (each relying on the suspicious subset) was studied. The measure of performance was based on the receiver operating characteristic curve. Computer simulations demonstrated how uncertainty combined with various independent variables (e.g., type of test, distribution of aberrant examinees) affected the performance of each statistic.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robustness of Computer Adaptive Tests to the Presence of Item Preknowledge: A Simulation Study;Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi;2024-06-30

2. The Impact of Generating Model on Preknowledge Detection in CAT;Springer Proceedings in Mathematics & Statistics;2024

3. The Impact of Item Preknowledge on Scaling and Equating: Item Response Theory True and Observed Score Equating Methods;Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi;2023-12-31

4. Overfitting Identification in Machine Learning Models with the Person-Fit Indicator;2023 4th International Conference on Computer Engineering and Intelligent Control (ICCEIC);2023-10-20

5. Detecting Group Collaboration Using Multiple Correspondence Analysis;Journal of Educational Measurement;2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3